
 

Now let us define another special relation defined from the set to itself which is called the 

irreflexive relation. And the requirement here is that you need that no element should be related 

to itself in the relation that means you take any element a from the set A, so this universal 

quantification over the domain is the set A. You take every element a from the domain or the set 

A, (a,a) should not be present in the relation 

 

Or the element should not be related to itself. So, it is easy to see that if your relation R is 

irreflexive, then none of the diagonal entries should be 1 in the relation. So, the matrix for your 

irreflexive relation will be an n x n matrix. Because the relation is defined from the set A to itself 

and (a1, a1) is not there in the relation, that means the entry number (1, 1) in the matrix will be 0. 

Similarly (a2, a2) is not there in your relation. 

 

That means the entry number (2, 2) in your matrix will be 0 and so on, that means the diagonal 

entry will be just consisting of 0’s or equivalently in terms of the graph representation no self 

loops will be present, because a1 will not have any directed edge to itself, a2 will not have any 

directed edge to itself and so on. So, again, let me demonstrate irreflexive relations here, so my 

set A is {1, 2} and I have taken the same 4 relations here. 

 

It turns out that relation R1 is not irreflexive because you have both (1, 1) and (2, 2) present.  

Similarly R2 is not irreflexive, R3 is also not irreflexive because you have (1, 1) present here, 
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whereas R4 is a valid irreflexive relation because no element of the form (a, a) is present in R4. 

Now it might look that any relation which is reflexive cannot be irreflexive or vice versa but or 

equivalently can we say that is it possible that I have a relation which is both reflexive as well as 

irreflexive defined over the same set A.  

 

Well the answer is yes because if you consider the set A equal to the empty set, and if you take 

the relation R, which is also the empty relation. That is the only relation possible over an empty 

set A then this relation R is both reflexive as well as irreflexive. It is reflexive because at the first 

place there is no element present in your set A and hence there is no chance of existence of any 

(a, a), present in the relation R equal to ϕ.  

 

And due to the same reason since no element is present in the set A you do not need any (a,a)  to 

be present in R. So, the relation R equal to ϕ satisfies the implication, this universal implication 

given in the definition of reflexive relation as well as irreflexive relation vacuously. So, we can 

have a relation defined over a set which can be simultaneously reflexive and irreflexive and that 

can happen in the special case when the set is an empty set.  

 

If A is non empty, then definitely you cannot have a relation which is both reflexive as well as 

irreflexive.  

(Refer Slide Time: 31:30) 
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Now let us define symmetric relations, so this relation can be defined from a set A to B where B 

is might be different from A. So, the relation is from A to B and we say it is symmetric, so as the 

name suggests symmetric we want here the following to hold, whenever a is related to b as per 

the relation R, we need that b also should be related to a and that is why the term symmetric here 

and of course this universal quantification is the domain of a is A and domain of b is B.  

 

I stress here this does not mean that you need every element of the form (a, b) and (b, a) to be 

present in the relation R, this is an implication. The implication here says that if (a, b) is present 

in R, then only you need (b, a) to be present in R. If (a, b) is not present at the first place in the 

relation, then I do not care whether (b, a) is there or not. I do not need (b, a) to be present, so the 

implication puts the restriction that this condition should be there should be true only if (a, b) is 

there in the relation.  

 

So, it is easy to see that the matrix for a symmetric relation will always be a symmetric matrix, 

because if you have ai R bj, that means the i, jth entrry will be 1 and since my relation is 

symmetric, that means I will also have (bj, ai) to be present. That means if I take the transpose of  

MR, then in the jth row and ith column, the entry will be 1. Equivalently in terms of directed graph 

representation, if I have a directed edge from the node ai to bj and since my relation is symmetric, 

the edge from bj to ai will also be present. So, again let us do this example, I have set A = {1, 2} 

and I am defining various binary relations from A to A itself. That means in this case my A is 

equal to B here. Now which of the following relations are symmetric. So, it is easy to see that the 

first relation is a symmetric relation because this condition is true here. 

 

I can say that since (1, 1) is present in the relation, I also have (1, 1) which can be interpreted as 

(b, a), also present in the relation. Due to the same reason since (2, 2) is present in the relation 

which can be interpreted as a being 2 and b being 2, I also have (b, a), present in the relation. 

Similarly the relation R2 is a symmetric relation, the relation R3 is also a symmetric relation 

because I have (1, 1) present in the relation. 

 

And for symmetric relation (1, 1) also should be present in the relation, which is the case. Turns 

out that ϕ, is also a symmetric relation here. It satisfies the requirement of symmetric relation 
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because at the first place there is no (a, b) present in my R4. That means vacuously this 

implication that this universally quantified statement is true for R4. And that is why R4 is also a 

valid symmetric relation. 

 

But R5 is not a valid symmetric relation because I have (2, 1) present in my relation but (1, 2) is 

not present in the relation. So, here is a question for you, can I say that every reflexive relation is 

also a symmetric relation? So, remember reflexive relation means every element of the form (a, 

a) will represent in R. And apart from that I might have something additional also present in the 

relation.  

 

So, if you are given a relation which is reflexive can I say that definitely it is also a symmetric 

relation and the answer is no. Take the example where A is equal to {1, 2} and let me define a 

relation R consisting of (1, 1), (2, 2) and say the element (1, 2). This relation is a reflexive 

relation, but this is not a symmetric relation. But this is not symmetric because you have (1, 2) 

present in the relation, but you do not have (2, 1) present in the relation.  

(Refer Slide Time: 37:08) 

 

Now the next special relation is the asymmetric relation and the condition here is, if you have a 

related to b in the relation, then you demand that b should not be related to a. And again this is an 

implication that means this should hold only if (a, b) is present in the relation at the first place, if 

(a, b) is not present in the relation, vacuously this statement will be true. So, in terms of matrix 
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notation the property of matrix for an asymmetric relation will be as follows.  

 

You take any i, jth entry, ith row and jth column, you can have at most one of the entries i, j or j, i 

being 1 in the matrix. You cannot have both entry number i, j 1 as well as j, i also 1. Because that 

will mean that you have (ai, bj) present in R, and (bj, ai)  also present in the R, which goes against 

the definition of asymmetric relation. This automatically means that the diagonal entries will be 

0.  

 

Because if you have (a, a) present in the R, then that violates the universal quantification here, 

that serves as a counter example because you have (a, a) present in the R and this (a, a) can be 

treated as again (a, a) with a and b so here a only is playing the role of both a as well as b. So, 

you have (a, b) as well as (b, a) both present in this relation R and that serves as a counter 

example for this universal quantification and hence your relation will not be asymmetric.  

 

So, none of the diagonal entries will be 1. In terms of graph representation, if you take any pair 

of nodes (ai, bj) then either you can have at most one edge, that means you can have either the 

edge from ai to bj or from bj to ai or no edge between ai or bj. So, this is a wrong statement here, 

so either edge ai to bj or no edge, that is also fine. Because if at the first place there is no 

relationship between ai and bj then that vacuously satisfies this universal quantification.  

 

So, again, here I am taking A and B to be the same sets and I have given you some relations. So, 

let us see which of these relations are asymmetric. The first relation is not asymmetric because 

you have (a, b) as well as (b, a), only (1, 1) being present in this relation which serves as both 

(a,b) as well as (b, a). Due to the same reason R2 is also not an asymmetric relation because you 

have both (a, b) as well as (b, a) present here. 

 

Some a and b is there for which this universal quantification is not true. Your relation R3 is also 

not asymmetric because you have (a, b) here written as well as (b, a) also present. Whereas the 

relation R4 is an asymmetric relation over the set A, because at the first place there is no (a, b) 

present in this relation R4, so R4 vacuously satisfies this universal quantification and R5 is also an 

asymmetric relation because you have only (a, b) present in this relation but no (b, a).  
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The next special relation is antisymmetric relation and the requirement here is the following. 

You want that if both (a, b) and (b, a) are present in your relation, that means if you have a case 

where an element a is related to b and b is also related to a, then that is possible only if a is equal 

to b. Contra-positively if a is not equal to b, then you can have either (a, b) present in the relation 

or (b, a) present in the relation or none of them being present in the relation.  

 

That means for distinct elements, you cannot have simultaneously a R b as well as b R a. That is 

what is the interpretation of this condition.  So, in terms of matrix properties if you focus on ith 

row and jth column where i and j are distinct, then only one of those entries can be 1. Of course 

both of them can be 0, that is also fine, because that means that neither a R b or nor b R a.  

 

The condition demands that if at all a and b and b and a are both present in the relation, then that 

is possible only when a and b are same, if they are different and you cannot have both (a, b) as 

well as (b, a) present in your relation. In terms of graph theoretic properties if you have 2 distinct 

nodes ai and bj, then you cannot have an edge simultaneously from ai to bj as well as from bj to ai, 

that is not allowed. 

 

Well, it is fine if you have no edge between these two nodes, that satisfies, that does not violate 

this universal quantification. So, here are some examples, relation R1 is an antisymmetric relation 
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because you have (a, b) present here namely (1, 1) and you also have (b, a), present here namely 

(1, 1), but the implication should be that 1 equal to 1 which is true, same holds for the element 

(2, 2).  

 

So, this is an example of an antisymmetric relation. But R2 is not an example of antisymmetric 

relation because you have a case here namely you have distinct (a, b) such that both (a, b) as well 

as (b, a) are present in your relation. R3 is an example of an antisymmetric relation and R4 is also 

an example of an antisymmetric relation because it satisfies this universal quantification 

vacuously.  

 

R5 is also an example of universal quantification, because you have (a, b) present here, but the 

(b, a) is not present in the relation R5, that means the premise of this implication is vacuously 

true for R5 and that is why this R5 is not violating this universal quantification.  

(Refer Slide Time: 44:51) 

 

So, we have symmetric relation, asymmetric relation and antisymmetric relation. These are the 

definitions here and people often wonder that there is some relationship among these three 

different notions here, this some people think that something which is not symmetric will be 

asymmetric and similarly they try to conclude some relationship between the symmetric 

property, asymmetric property and antisymmetric property. But it turns out there is absolutely no 

relationship. You might have a possibility where you have a relation which satisfies all the three 
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properties, namely if I take the set A and I take the relation R to be empty, then the relation R, 

which is an empty set here is symmetric as well as asymmetric as well as antisymmetric, it 

satisfies all these 3 universal quantifications.  

 

Whereas there might be a possibility that a relation satisfies none of these 3 properties. So, if I 

take the set A to be {1, 2, 3}, and I take this relation R then it is not so, let us see which of these 

three properties it satisfies, so it is not symmetric because you have (a, b) here, but no (b, a). 

Only 1 is related to 2, but 2 is not related to 1, so it is not symmetric. It is not an asymmetric 

relation because you have (a, b) here and simultaneously (b, a) also, then this (2, 3) is there as 

well as (3, 2) is there.  

 

So, it violates the universal quantification for asymmetric relations and it is not an asymmetric 

relation because you have (a, b) as well as (b, a) both being present here, even though your a and 

b are different. Then 2 is not equal to 3 but still you have (2, 3) as well as (3, 2) present in the 

relation. So, there is no absolute relationship among the notion of symmetric, asymmetric and 

antisymmetric relations.  

(Refer Slide Time: 47:05) 

 

Now let us see the last important relation here, which is the transitive relation. And what do we 

mean by a transitive relation here, so a relation R is called a transitive relation if the following 

universal quantification is true. We want that if at all a R b and b R c in your relation, then a also 
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should be related to c. In terms of graph theoretic properties, if you have an edge from a to b in 

the graph of your relation R. 

 

And if you have; a directed edge from the node b to the node c in the graph of your relation R. 

Then we need that there should be an edge from a to c as well. And this should hold for every a, 

b, c, where the domain of a, b, c are from the sets over which the relation is defined. So, let us 

take this example, so consider the first relation it is a transitive relation, of course, so here 

everything is defined over a set say {1, 2} and a relation R1 is transitive. 

 

Because you have; (1, 1) present which can be also considered as (a, b) as well as (b, c) as well 

as (a, c).  

So, again the same is true for (2, 2). But your relation R2 is not transitive because you have a 

case here where you have (a, b) present, you also have (b, c) present but no (a, c) is present here. 

Namely (1, 1) is not present in your relation. Your relation R3 is also a transitive relation because 

you have (a, b) present, (b, c) present and you also have corresponding, (a, c) present.  

 

Your R4 is a transitive relation because it vacuously satisfies this implication because at the first 

place there is no (a, b) and (b, c) present in your R4. And your relation R5 also satisfies vacuously 

this universal quantification, because you have (a, b) present but there is no (b, c) present that 

means there is nothing of the form (1, 2) here or (1, 1) here. That means vacuously this condition 

is true for R5.  

 

And that is why R5 is also a transitive relation. So, that brings me to the end of this lecture. Just 

to summarize in this lecture we introduced binary relations and some special types of binary 

relations. We also discussed the 2 representations that we follow to represent any binary relation. 

233


